It is not clear how soil organic carbon (SOC) and its related microbial processes respond to climate warming in subtropical forest, which limits our ability to predict the response and feedback of such forests to future warming. Here, we translocated a forest microcosm from a high-elevation site to a low-elevation site (600 m–30 m a.s.l.) in a subtropical forest, to study the responses of SOC fractions, microbial communities and enzyme activities to increases in soil temperature (ca. 1.69 °C). Results showed that translocation to a warmer region significantly decreased the total SOC content by an average of 21.1% after three years of soil warming. Warming non-significantly decreased the particulate organic C (POC) and microbial C (MBC) content by 15.7% and 15.2%, respectively, and increased the light fraction organic C (LFOC) and dissolved organic C (DOC) content by 15.5% and 2.3%, respectively. By contrast, warming significantly decreased the <53 μm fraction organic C (N-POC, −15.3%) and heavy fraction organic C (HFOC, −14.8%) content. Warming significantly decreased the relative abundance of total bacteria (−2.7%), G+ bacteria (−6.1%), G− bacteria (−6.6%) and actinomycetes (−10.8%), but increased the relative abundance of fungi (+22%). The oxidase and mass-specific oxidase activities were significantly increased by 32–70% in the warming soils. The decline in the N-POC was highly correlated to the increases in the relative abundance of fungi, the ratio of fungal to bacterial biomass (F:B), oxidase and mass-specific oxidase activities. Our results suggest that climate warming may increase the potential for fungal decomposition of mineral-associated organic C by increasing oxidase activities, leading to greater C losses in the subtropical forest than previously estimated.
Read full abstract