We have shown in a previous paper that, if the primordial solar nebula existed when the Earth was formed, the Earth was once surrounded by a dense and massive primordial atmosphere, whose temperature and pressure were about 4000 K and 900 atm, respectively, at the bottom. We suppose that this hydrogen-rich atmosphere escaped from the Earth after the solar nebula itself disappeared, both phenomena probably being due to the effect of strong solar wind and radiation. Using the results of our previous and new calculations on the structure of the primordial atmosphere, we have investigated the amount of dissolution of the rare gases, which were contained in the primordial atmosphere, into the molten Earth's material. The amount of the dissolved rare gases is found to be strongly dependent on the grain opacity of the atmosphere, i.e., on the amount of fine grains. However, their isotopic ratios and relative abundance are independent of the opacity and approximately equal to those in the primordial solar nebula, that is, to the present solar values. Especially, the dissolved neon is expected to have remained in the present mantle. Therefore, if a considerable amount of neon with nearly the solar isotopic ratio is discovered in present mantle material, this offers direct evidence for the proposition that the proto-Earth was once surrounded by the primordial atmosphere.