ProblemTherapeutic planning strategies have been developed to enhance the effectiveness of cancer drugs. Nevertheless, their performance is highly limited by the inefficient biological representativeness of predictive tumor growth models, which hinders their translation to clinical practice. ObjectiveThis study proposes a disruptive approach to oncology based on nature-inspired control using realistic Black Hole physical laws, in which tumor masses are trapped to experience attraction dynamics on their path to complete remission or to become a chronic disease. This control method is designed to operate independently of individual patient idiosyncrasies, including high tumor heterogeneities and highly uncertain tumor dynamics, making it a promising avenue for advancing beyond the limitations of the traditional survival probabilistic paradigm. DesignHere, we provide a multifaceted study of chemotherapy therapeutic planning that includes: (1) the design of a pioneering controller algorithm based on physical laws found in the Black Holes; (2) investigation of the ability of this controller algorithm to ensure stable equilibrium treatments; and (3) simulation tests concerning tumor volume dynamics using drugs with significantly different pharmacokinetics (Cyclophosphamide and Atezolizumab), tumor volumes (200 mm3 and 12 732 mm3) and modeling characterizations (Gompertzian and Logistic tumor growth models). ResultsOur results highlight the ability of this new astrophysical-inspired control algorithm to perform effective chemotherapy treatments for multiple tumor-treatment scenarios, including tumor resistance to chemotherapy, clinical scenarios modelled by time-dependent parameters, and highly uncertain tumor dynamics. ConclusionsOur findings provide strong evidence that cancer therapy inspired by phenomena found in black holes can emerge as a disruptive paradigm. This opens new high-impacting research directions, exploring synergies between astrophysical-inspired control algorithms and Artificial Intelligence applied to advanced personalized cancer therapeutics.
Read full abstract