The focus of this study is to investigate the underexplored operational effects of disengagements on the speed of an automated shuttle, providing novel insights into their disruptive impact on performance metrics. For this purpose, global positioning system data, disengagement records, weather reports, and roadway geometry data from an automated shuttle pilot program, from July to December 2023, at the University of North Carolina in Charlotte, were collected. The automated shuttle uses sensors for localization, navigation, and obstacle detection. A multi-level mixed-effects Gaussian regression model with a log-link function was employed to analyze the effect of disengagement events on the automated shuttle speed, while accounting for control variables such as roadway geometry, weather conditions, time-of-the-day, day-of-the-week, and number of intermediate stops. When these variables are controlled, disengagements significantly reduce the automated shuttle speed, with the expected log of speed decreasing by 0.803 units during such events. This reduction underscores the disruptive impact of disengagements on the automated shuttle's performance. The analysis revealed substantial variability in the effect of disengagements across different route segments, suggesting that certain segments, likely due to varying traffic conditions, road geometries, and traffic control characteristics, pose greater challenges for autonomous navigation. By employing a multi-level mixed-effects model, this study provides a robust framework for quantifying the operational impact of disengagements. The findings serve as vital insights for advancing the reliability and safety of autonomous systems through targeted improvements in technology and infrastructure.
Read full abstract