Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.001 to 10µmol/L) for 48h. The expressions of glutathione peroxidase 1 (GPX1), selenoprotein P (SELENOP), 3-phosphoglycerate dehydrogenase (PHGDH), and serine hydroxy-methyltransferases 1 (SHMT1) were assessed by western blotting (WB). Then, corresponding to the peak expressions of GPX1, SELENOP, and PHGDH, 0.1µmol/L SeMet was identified as the highest intervention concentration. With more detailed levels of SeMet (0.001 to 0.1µmol/L) given, the differentiated C2C12 cells were treated for 48h to analyze the expressions of selenoproteins, enzymes related with serine metabolism and insulin signaling pathway. Among the four cell lines, the expressions of selenoproteins and metabolic enzymes of serine in C2C12 cells were more sensitive to changes in Se concentrations, which was similar to that in L02 cells. In C2C12 cells, the expressions of GPX1, SELENOP, selenoprotein N (SELENON), PHGDH, and SHMT1 exhibited a parabolic inflection point at SeMet concentrations of 0.05µmol/L or 0.075µmol/L, while 5,10-methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) showed no such trend. After 15min of insulin stimulation, glucose retained more in the culture medium due to the decreased uptake by C2C12 cells. The expressions of key enzymes (AKT, AKT (Ser-473), AKT (Thr-308), mTOR, and PI3K) in the PI3K-AKT-mTOR signaling pathway decreased with the increased level of SeMet. This study demonstrated that excessive Se intake could induce abnormal glucose metabolism via SSP and impair the normal signaling of insulin in the differentiated C2C12 cells.
Read full abstract