Parkinson's disease is a complex neurodegenerative disorder characterized by degeneration of dopaminergic neurons, with patients manifesting varying motor and nonmotor symptoms. Previous studies using single-cell RNA sequencing in rodent models and humans have identified distinct heterogeneity of neurons and glial cells with differential vulnerability. Recent studies have increasingly leveraged multiomics approaches, including spatial transcriptomics, epigenomics, and proteomics, in the study of Parkinson's disease, providing new insights into pathogenic mechanisms. Continued advancements in experimental technologies and sophisticated computational tools will be essential in uncovering a network of neuronal vulnerability and prioritizing disease modifiers for novel therapeutics development. © 2025 International Parkinson and Movement Disorder Society.
Read full abstract