Recent volcanic activity has long been considered a distinct possibility that would place major constraints on the evolution of Mars’ interior. Volcanic activity would result in the outgassing of sulfur-bearing species. As part of our multi-band search for active release of volcanic gases on Mars, we looked for carbonyl sulfide (OCS) at its combination band (ν1+ν3) at 3.42 µ m (2924 cm−1), and sulfur dioxide (SO2) at 346.652 GHz, in two successive Mars years during its late Northern spring and mid Northern summer seasons (Ls= 43°–144°). The targeted volcanic districts, Tharsis and Syrtis Major, were observed during the two intervals, 15 Dec. 2011 to 6 Jan. 2012 in the first year, and 23 May 2014 to 12 June 2014 in the second year using the high resolution infrared spectrometer CSHELL on the NASA Infrared Telescope Facility, and the high resolution heterodyne receiver HARP at the James Clerk Maxwell Telescope atop Maunakea, Hawaii. No active release of such gases was detected, and we report 2σ upper limits of 1.8 ppbv and 3.1 ppbv for OCS and SO2, respectively, compared to 0.3 ppbv for SO2 (Encrenaz, T. et al. [2011] Astron. & Astrophys. 530, A37; Krasnopolsky, V.A. [2012] Icarus 217, 144–152) over the disk of Mars. Our retrieved upper limit on the SO2 outgassing rate of 156 tons/day (1.8 kg/s), corresponds to a mass rate of magma that is able to degas the SO2 of 104 kilotons/day (1200 kg/s), or 40,000 m3/day (0.46 m3/s). Our campaign places stringent limits on the concentration of sulfur-bearing species into the atmosphere of Mars.