The specific mechanisms underlying effector pathways in autoimmune liver disease remain enigmatic and therefore constructing appropriate murine models to investigate disease pathogenesis becomes critical. A spontaneous severe murine model of autoimmune liver disease has been previously established in dnTGFβRII Aire-/- mice, exhibiting disease phenotypes that resemble both human primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH). The data suggests that auto-reactive liver-specific CD8+ T cells are the primary pathogenic cells in liver injury. In this study, these data are advanced through the use of both single-cell sequencing and extensive in vitro analysis. The results identify a specific expanded pathogenic subset of PD-1+CD8+ T cells in the liver, exhibiting strong functional activity and cytotoxicity against target cells. Depletion of PD-1+CD8+ T cells using CAR-T cells effectively alleviates the disease. GSDMD-mediated pyroptosis is found to be aberrantly activated in the livers of model mice, and treatment with a GSDMD-specific inhibitor significantly inhibits disease progression. In vitro experiments reveal that PD-1+CD8+ T cells can induce the pyroptosis of hepatocytes through elevated production of granzyme B and perforin-1. These results provide a novel explanation for the cytotoxic activity of pathogenic liver PD-1+CD8+ T cells in autoimmune liver diseases and offer potential therapeutic targets.