Abstract
This study aimed to investigate the metabolic changes in the kidneys in a murine adenine-diet model of chronic kidney disease (CKD). Kidney fibrosis is the common pathological manifestation across CKD aetiologies. Sustained inflammation and fibrosis cause changes in preferred energy metabolic pathways in the cells of the kidney. Kidney cortical tissue from mice receiving a control or adenine-supplemented diet for 8weeks (late inflammation and fibrosis) and 12 weeks (8weeks of treatment followed by 4weeks recovery) were analysed by 2D-correlated nuclear magnetic resonance spectroscopy and compared with histopathology and biomarkers of kidney damage. Tissue metabolite and lipid levels were assessed using the MestreNova software. Expression of genes related to inflammation, fibrosis, and metabolism were measured using quantitative polymerase chain reaction. Animals showed indicators of severely impaired kidney function at 8 and 12 weeks. Significantly increased fibrosis was present at 8weeks but not in the recovery group suggesting some reversal of fibrosis and amelioration of inflammation. At 8weeks, metabolites associated with glycolysis were increased, while lipid signatures were decreased. Genes involved in fatty acid oxidation were decreased at 8weeks but not 12 weeks while genes associated with glycolysis were significantly increased at 8weeks but not at 12 weeks. In this murine model of CKD, kidney fibrosis was associated with the accumulation of triglyceride and free lactate. There was an up-regulation of glycolytic enzymes and down-regulation of lipolytic enzymes. These metabolic changes reflect the energy demands associated with progressive kidney disease where there is a switch from fatty acid oxidation to that of glycolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.