Skeletal dysplasia is a group of disorders of the skeleton that result from derangement of growth, development and/or differentiation of the skeleton. Nearly 300 disorders are included; most of them are monogenic diseases. Responsible genes for skeletal dysplasia have been identified in more than 150 diseases mainly through positional cloning. Identification of disease genes would improve patient care through genetic diagnosis as well as improving our understanding of the diseases and molecular mechanism of skeletal tissue formation. Studies of skeletal dysplasia would also help identify disease genes for common diseases affecting bones and joints. In this study, the author reviews recent advances and the current status of the genetic analysis of skeletal dysplasia and its impacts on research into skeletal biology.