The use of lactic acid bacteria of aquatic origin as probiotics constitutes an alternative strategy to the antibiotic treatment for disease control in aquaculture. Enterococci are currently used as probiotics in human and animal health. In this study, we evaluated the safety of 64 enterococci isolated from rainbow trout (Oncorhynchus mykiss, Walbaum), feed and rearing environment, and their antimicrobial activity against 9 fish pathogens. The 64 enterococcal isolates were identified to the species level by polymerase chain reaction (PCR), using specific primers for the different enterococcal species, and confirmed by superoxide dismutase gene sequencing. Enterococcus faecium and E. hirae were the most common species (42.2 and 35.9%, respectively). A total of 48 isolates (75%) showed phenotypic resistance to at least 1 antibiotic determined by a disk-diffusion method, and 25 isolates (39.1%) harbored at least 1 antibiotic resistance gene [erm(B), tet(M), tet(S), tet(K), tet(L), tet(T), vanC2, and aad(E)], detected by PCR. One (1.6%) isolate produced gelatinase and none produced hemolysin, using a plate assay. The virulence genes gelE (46.9%), efaAfs (17.2%), agg (1.6%), and hyl (1.6%) were detected by PCR. A total of 48 isolates (75%) exerted antimicrobial activity against 1 or more of the tested fish pathogens, using a stab-on-agar test. From these isolates, 21 (43.8%) harbored at least 1 bacteriocin-encoding gene (entP, entL50A and entL50B, hirJM79, entSE-K4, entQ and entA), detected by PCR. None of the enterococci showed bile deconjugation and mucin degradation abilities. A total of 17 enterococcal isolates (26.6%) that did not harbor any antibiotic resistance or virulence factor were considered safe for application as probiotics, including 6 isolates (35.3%) that showed antimicrobial activity against at least 1 fish pathogen and harbored at least 1 bacteriocin-encoding gene. Rainbow trout, feed, and rearing environment constitute an appropriate source for the isolation of enterococci as potential probiotic for aquaculture.
Read full abstract