Plant disease classification using machine learning in a real agricultural field environment is a difficult task. Often, an automated plant disease diagnosis method might fail to capture and interpret discriminatory information due to small variations among leaf sub-categories. Yet, modern Convolutional Neural Networks (CNNs) have achieved decent success in discriminating various plant diseases using leave images. A few existing methods have applied additional pre-processing modules or sub-networks to tackle this challenge. Sometimes, the feature maps ignore partial information for holistic description by part-mining. A deep CNN that emphasizes integration of partial descriptiveness of leaf regions is proposed in this work. The efficacious attention mechanism is integrated with high-level feature map of a base CNN for enhancing feature representation. The proposed method focuses on important diseased areas in leaves, and employs an attention weighting scheme for utilizing useful neighborhood information. The proposed Attention-based network for Plant Disease Classification (APDC) method has achieved state-of-the-art performances on four public plant datasets containing visual/thermal images. The best top-1 accuracies attained by the proposed APDC are: PlantPathology 97.74%, PaddyCrop 99.62%, PaddyDoctor 99.65%, and PlantVillage 99.97%. These results justify the suitability of proposed method.
Read full abstract