Digital data interchange in IoT systems has flourished with the advancement of industrial internet technologies. Particularly, more and more digital images created by intelligent and industrial equipment are sent there are security concerns related to the website, server, and cloud. To accomplish this issue, in this article a secure watermarking approach is suggested in this research to effectively improve security, invisibility, and resilience at the same time. The adequate coefficient for information embedding is first determined using an assortment of transform domain techniques Discrete-Wavelet-Transform (DWT), Heisenberg- decomposition (HD), and Tensor-singular-value-decomposition (T-SVD). Using the grey wolf optimization (GWO) approach, we estimated the appropriate embedding factors to provide a reasonable compromise between robustness and invisibility. To enable the suggested approach to offer an additional level of security, a selective encryption technique is used on the watermark image. Moreover, FFDNet—a quick and adaptable de-noising convolutional-neural–network is working to increase the robustness-of-the suggested algorithm. The results demonstrate that the recommended watermarking method generates exceptional imperceptibility, resilience, and security against standard attacks. Additionally, the comparison demonstrates that the suggested algorithm performs better than alternative strategies. The following metrics were reached: 51.6966 dB, 0.9944, 0.9961, and 0.2849 for the peak-signal- to-noise ratio (PSNR), Structural-Similarity-Index (SSIM), number of changing pixels per second (NPCR), and unified-averaged-changed-intensity (UACI) average scores.
Read full abstract