The aquachromyl ion, Cr(IV)aqO2+, reacts with the hydrides L(H2O)RhH2+ (L = L1 = [14]aneN4 and L2 = meso-Me6-[14]aneN4) in aqueous solutions in the presence of molecular oxygen to yield Cr(aq)3+ and the superoxo complexes L(H2O)RhOO2+. At 25 degrees C, the rate constants are approximately 10(4) M(-1) s(-1) (L = L1) and 1.12 x 10(3) M(-1) s(-1) (L = L2). Both reactions exhibit a moderate deuterium isotope effect, kRhH/kRhD = approximately 3 (L1) and 3.3 (L2), but no solvent isotope effect, kH2O/kD2O = 1. The proposed mechanism involves hydrogen atom abstraction followed by the capture of LRh(H2O)2+ with molecular oxygen. There is no evidence for the formation of L(H2O)Rh2+ in the reaction between L(H2O)RhH2+ and (salen)CrVO+. The proposed hydride transfer is supported by the magnitude of the rate constants (L = L1, k = 8,800 M(-1) s(-1); (NH3)4, 2,500; L2, 1,000) and isotope effects (L = L1, kie = 5.4; L2, 6.2). The superoxo complex [L1(CH3CN)RhOO](CF3SO3)2.H2O crystallizes with discrete anions, cations, and solvate water molecules in the lattice. All moieties are linked by a network of hydrogen bonds of nine different types. The complex crystallized in the triclinic space group P1 with a = 9.4257(5) A, b = 13.4119(7) A, c = 13.6140(7) A, alpha = 72.842(1)degrees, beta = 82.082(1) degrees, gamma = 75.414(1) degrees, V = 1587.69(14) A3, and Z = 2.
Read full abstract