We consider an irreducible discrete-time Markov process with states represented as (k, i) where k is an M-dimensional vector with non-negative integer entries, and i indicates the state (phase) of the external environment. The number n of phases may be either finite or infinite. One-step transitions of the process from a state (k, i) are limited to states (n, j) such that n ≥ k−1, where 1 represents the vector of all 1s. We assume that for a vector k ≥ 1, the one-step transition probability from a state (k, i) to a state (n, j) may depend on i, j, and n − k, but not on the specific values of k and n. This process can be classified as a Markov chain of M/G/1 type, where the minimum entry of the vector n defines the level of a state (n, j). It is shown that the first passage distribution matrix of such a process, also known as the matrix G, can be expressed through a family of nonnegative square matrices of order n, which is a solution to a system of nonlinear matrix equations.
Read full abstract