Noble metals are commonly used as plasmon materials because of their high density of free electrons, but semiconductor materials are also becoming of interesting in this field because its electron density can be varied by doping. Metal nitrides can be an alternative to noble metals because of their low absorption loss and high electron density. Among others, TiN and ZrN seem to be most suitable as alternative plasmonic materials because their optical properties are dominated by conduction electrons near the plasmon frequency. There is the flame spray pyrolysis process, which is currently developed to produce such kind of nanoparticles. In this paper, based on an extension of the discrete sources method, the effect of the hydrodynamic Drude model of the quantum nonlocal effect on the optical characteristics of semiconductor nanoparticles is analyzed. The influence of accounting for the nonlocal effect (NLE) on the optical properties under spherical particles deformation has been investigated. It has been shown that accounting for the NLE leads to a plasmon resonance blue shift and a damping similar to noble metals. It was found that smaller particles demonstrate larger NLE influence than larger ones. Besides, the influence of polarization on the local and nonlocal responses of 3D nonspherical semiconductor particles has been investigated as well. Using simulation accounting for the nonlocal effect, it is shown that the extinction of a nonspherical ZrN particles exceeds that of a gold particle.
Read full abstract