ABSTRACT Curved layering has become one of the current research hotspots for its unique advantages. In order to improve the adaptability and accuracy, this paper proposes a new curved layering and path planning algorithm based on voxelization and geodesic distance. High density discrete points are used to approximate the shortest path, voxelization and new optimized search algorithm are adopted to obtain the geodesic distance field within stereolithography (STL) model. Curved layers are formed from points with equal geodesic distance values. The developed algorithm overcomes the limitations of the existing facet offsetting method. Moreover, robot positioner angle planning strategies are exploited to achieve good formation for support-free curved layers of spatial overhang characteristics. The results of comparative analysis and verification experiment indicate that the algorithm accuracy is not affected by the size and intersection angle of the triangles, satisfies the high-precision requirements for parts with curved surface in robotic GMA additive manufacturing.