Abstract
An energy functional describes the equilibrium state of a system. In this work, we present a novel technique, Functional Optimization using Neural Networks (FONN), for minimizing the system’s energy. FONN utilizes neural networks to process information at discrete grid points, considering their interactions with neighboring grid points, to update the state of the system. The training process involves formulating a loss function based on the system’s energy, and with the help of multiple fine-tuning steps, the method employs a progressive energy reduction technique that decreases the energy in multiple steps. FONN’s effectiveness is demonstrated across various problems, including the minimization of the heat and Lyapunov energy. Moreover, the paper explores the minimization of the elastic bending energy with an area constraint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.