AbstractIn magnetic recording technology, barriers based on fundamental physical limits on the data density are being approached for the current longitudinal recording modes. However, demands for higher data storage density have escalated in recent years. Discrete perpendicular recording is a viable method to achieve 100 Gb per square inch and beyond. We report on the development of a novel technique to fabricate uniform arrays of nano-sized magnetic dots. Uniform arrays of nanometer-sized magnetic dots are obtained by magnetron sputtering deposition through a nanochannel glass replica mask. The platinum replica masks are fabricated using thin film deposition on etched nanochannel glass and contain uniform hexagonally patterned voids with diameters as small as 50 nanometers. The magnetic dot density can be as high as 1011 per square inch. Our method provides a simple yet effective way to create regularly arranged discrete magnetic media that can be used for perpendicular magnetic recording. The magnetic properties of the dots are studied with a vibrating sample magnetometer.