We consider the subharmonics with minimal periods for convex discrete Hamiltonian systems. By using variational methods and dual functional, we obtain that the system has a <svg style="vertical-align:-3.50804pt;width:21.525px;" id="M1" height="15.9875" version="1.1" viewBox="0 0 21.525 15.9875" width="21.525" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.55)"><path id="x1D45D" d="M570 304q0 -108 -87 -199q-40 -42 -94.5 -74t-105.5 -43q-41 0 -65 11l-29 -141q-9 -45 -1.5 -58t45.5 -16l26 -2l-5 -29l-241 -10l4 26q51 10 67.5 24t26.5 60l113 520q-54 -20 -89 -41l-7 26q38 28 105 53l11 49q20 25 77 58l8 -7l-17 -77q39 14 102 14q82 0 119 -36
t37 -108zM482 289q0 114 -113 114q-26 0 -66 -7l-70 -327q12 -14 32 -25t39 -11q59 0 118.5 81.5t59.5 174.5z" /></g><g transform="matrix(.017,-0,0,-.017,10.143,11.55)"><path id="x1D447" d="M649 676l-22 -187l-33 -2q3 56 -12 94q-8 20 -31.5 26.5t-86.5 6.5h-74l-90 -491q-4 -23 -6 -36.5t1 -25t7 -16.5t18 -9t27 -5t41 -3l-6 -28h-286l4 28q68 5 84 18.5t28 76.5l94 491h-55q-74 0 -100.5 -6t-41.5 -23q-24 -29 -54 -98l-32 1q32 98 53 188h22q7 -18 15 -22
t37 -4h417q23 0 33.5 5t25.5 21h23z" /></g> </svg>-periodic solution for each positive integer <svg style="vertical-align:-3.50804pt;width:10.2px;" id="M2" height="13.3" version="1.1" viewBox="0 0 10.2 13.3" width="10.2" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,8.863)"><use xlink:href="#x1D45D"/></g> </svg>, and solution of system has minimal period <svg style="vertical-align:-3.50804pt;width:21.525px;" id="M3" height="15.9875" version="1.1" viewBox="0 0 21.525 15.9875" width="21.525" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.55)"><use xlink:href="#x1D45D"/></g><g transform="matrix(.017,-0,0,-.017,10.143,11.55)"><use xlink:href="#x1D447"/></g> </svg> as <svg style="vertical-align:-0.0pt;width:15.0375px;" id="M4" height="11.175" version="1.1" viewBox="0 0 15.0375 11.175" width="15.0375" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><path id="x1D43B" d="M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28
h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z" /></g> </svg> subquadratic growth both at 0 and infinity.