The maritime domain continues to be important for our society. Significant investments continue to be made to increase our knowledge about what “happens” underwater, whether at or near the sea surface, within the water column, or at the seabed. The latest geophysical, archaeological, and oceanographical surveys deliver more accurate global knowledge at increased resolutions. Surveillance applications allow dynamic systems to be accurately characterized. Underwater exploration is fundamentally reliant on the effective processing of sensor signal data. All maritime applications face the same difficult operating environment: fading channels, rapidly changing environmental conditions, high noise levels at sensors, sparse coverage of the measurement area, limited reliability of communication channels, and the need for robustness and low energy consumption, just to name a few. There are obvious technical similarities in the signal processing that have been applied to different measurement equipment, and this special issue aims to help foster cross-fertilization between these different application areas. The articles in this special issue cover the following topics: First, underwater acoustics: “Underwater broadband source localization based onmodal filtering and features extraction”, “Simulation of matched field processing localization based on EMD denoising and Karhunen-Loeve expansion in underwater waveguide environment,” “A relative-localization algorithm using incomplete pair-wise distance measurements for underwater applications,” “Acoustic particle detection with the ANTARES detector,” “Masking of time-frequency patterns in applications of passive underwater target detection,” “An underwater acoustic implementation of DFT-spread OFDM,” “Low complexity iterative receiver design for shallow water acoustic channels,” and “Automatic indexing and content analysis of whale recordings and XML representation.” Second, underwater nonacoustics: “Silent localization of underwater sensors using magnetometers”, “Hausdorff-based RC and IESIL combined positioning algorithm for underwater geomagnetic navigation”, and “Realistic subsurface anomaly discrimination using electromagnetic induction and an SVM classifier”. Third, radar: “CFAR detection from non-coherent radar echoes using bayesian theory”, “Artificial neural network-based clutter reduction systems for ship size estimation in maritime radars.” Fourth, optics: “An evaluation of pixel-based methods for the detection of floating objects on the sea surface,” “Statistical real-time model for performance prediction of ship detection from micro-satellite electro-optical imagers,” “Techniques for effective optical noise rejection in amplitude-modulated laser optical radars for underwater three-dimensional imaging,” “Underwater image processing: state of the art of restoration and image enhancement methods,” and “A fully automated method to detect and segment a manufactured object in an underwater color image.”
Read full abstract