To address the stress–structural failure phenomenon that can be induced by the excavation of a left-side tunnel section of a 610 m crushing station, an unmanned aerial vehicle was used in this study to collect the geological conditions and rock mass information of the working face, and important geometric information such as the attitude and spacing of rock mass were extracted. Based on the identified attitude and spacing information, a three-dimensional rock mass structure and numerical simulation model of the 610 m crushing station left-side tunnel section were constructed using discrete element numerical simulation software (3DEC) (version 5.0). The results show that the surrounding rock instability of the left-side tunnel section of the 610 m crushing station is controlled by both the stress field in the contact zone between reddish-brown granite stratum and the gray-black-gray gneiss stratum. The cause of stress–structural failure is that the joint sets (JSet #2 and JSet #3) are most likely to form unfavorable blocks with the excavation surface due to unloading triggered by the excavation. Therefore, stress–structural failure disasters in jointed strata sections are one of the key issues for surrounding rock stability during crushing station excavation. It is suggested to adopt ‘optimized excavation parameters + combined support forms’ to systematically control stress–structural failure after unloading due to the excavation from three levels: surface, shallow, and deep. The stress–structural failure mechanism of deep rock mass is generally applicable to a large extent, so the results of this research have reference value for engineering projects facing similar problems around the world.