In this paper, we aim to investigate the spectrum of the nonselfadjoint operator L generated in the Hilbert space l_{2}(mathbb{N},mathbb{C}^{2}) by the discrete Dirac system{yn+1(2)−yn(2)+pnyn(1)=λyn(1),−yn(1)+yn−1(1)+qnyn(2)=λyn(2),n∈N,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} y_{n+1}^{ (2 )} - y_{n}^{ (2 )} + p_{n} y_{n}^{ (1 )} =\\lambda y_{n}^{ (1 )},\\\\ - y_{n}^{ (1 )} + y_{n-1}^{ (1 )} + q_{n} y_{n}^{ (2 )} =\\lambda y_{n}^{ (2 )}, \\end{cases}\\displaystyle \\quad n\\in \\mathbb{N}, $$\\end{document} and the general boundary condition∑n=0∞hnyn=0,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\sum_{n = 0}^{\\infty } h_{n}y_{n} = 0, $$\\end{document} where λ is a spectral parameter, Δ is the forward difference operator, (h_{n}) is a complex vector sequence such that h_{n} = ( h_{n}^{(1)}, h_{n}^{(2)} ), where h_{n}^{(i)} in l^{1} ( mathbb{N} ) cap l^{2} ( mathbb{N} ), i = 1,2, and h_{0}^{(1)} ne 0. Upon determining the sets of eigenvalues and spectral singularities of L, we prove that, under certain conditions, L has a finite number of eigenvalues and spectral singularities with finite multiplicity.
Read full abstract