It has been well established that kinematic mapping theory could be applied to mechanism synthesis, where discrete motion approximation problem could be converted to a surface fitting problem for a group of discrete points in hyperspace. In this paper, we applied kinematic mapping theory to planar discrete motion synthesis of an arbitrary number of approximated poses as well as up to four exact poses. A simultaneous type and dimensional synthesis approach is presented, aiming at the problem of mixed exact and approximate motion realization with three types of planar dyad chains (RR, RP, and PR). A two-step unified strategy is established: first N given approximated poses are utilized to formulate a general quadratic surface fitting problem in hyperspace, then up to four exact poses could be imposed as pose-constraint equations to this surface fitting system such that they could be strictly satisfied. The former step, the surface fitting problem, is converted to a linear system with two quadratic constraint equations, which could be solved by a null-space analysis technique. On the other hand, the given exact poses in the latter step are formulated as linear pose-constraint equations and added back to the system, where both type and dimensions of the resulting optimal dyads could be determined by the solution. These optimal dyads could then be implemented as different types of four-bar linkages or parallel manipulators. The result is a novel algorithm that is simple and efficient, which allows for N-pose motion approximation of planar dyads containing both revolute and prismatic joints, as well as handling of up to four prescribed poses to be realized precisely.