Abstract

This paper deals with the necessary and sufficient conditions of optimality for the Mayer problem of second-order discrete and discrete-approximate inclusions. The main problem is to establish the approximation of second-order viability problems for differential inclusions with endpoint constraints. Thus, as a supplementary problem, we study the discrete approximation problem and give the optimality conditions incorporating the Euler-Lagrange inclusions and distinctive transversality conditions. Locally adjoint mappings (LAM) and equivalence theorems are the fundamental principles of achieving these optimal conditions, one of the most characteristic properties of such approaches with second-order differential inclusions that are specific to the existence of LAMs equivalence relations. Also, a discrete linear model and an example of second-order discrete inclusions in which a set-valued mapping is described by a nonlinear inequality show the applications of these results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.