Abstract
A regularized electromagnetic iterative inverse algorithm is formulated and implemented to reconstruct the shape of 2D dielectric objects using the far-field pattern of the scattered field data. To achieve this, an integral operator that maps the unknown boundary of the object onto the far-field pattern of the scattered field is defined and solved for the unknown boundary. The addressed inverse problem has an ill-posed nature and inherits nonlinearity. To overcome these, the proposed solution is linearized via Newton and regularized by Tikhonov in the sense of least squares. Besides, the dominance of the shadow region in the inverse-imaging process is exceeded by considering the superposition of multi-incoming plane waves, leading to less computational cost and a very fast inversion process. Comprehensive numerical analyses are carried out to ascertain the algorithm's feasibility, revealing that it is very efficient and promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: An International Journal of Optimization and Control: Theories & Applications (IJOCTA)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.