Intelligent transportation systems (ITS) urgently need to realize vehicle identification, dynamic monitoring, and traffic flow monitoring under high-speed motion conditions. Vehicle tracking based on radio frequency identification (RFID) and electronic vehicle identification (EVI) can obtain continuous observation data for a long period of time, and the acquisition accuracy is relatively high, which is conducive to the discovery of rules. The data can provide key information for urban traffic decision-making research. In this paper, an RFID tag motion trajectory tracking method based on RF multiple features for ITS is proposed to analyze the movement trajectory of vehicles at important checkpoints. The method analyzes the accurate relationship between the RSSI, phase differences, and driving distances of the tag. It utilizes the information weight method to obtain the weights of multiple RF characteristics at different distances. Then, it calculates the center point of the common area where the vehicle may move under multi-antenna conditions, confirming the actual position of the vehicle. The experimental results show that the average positioning error of moving RFID tags based on dual-frequency signal phase differences and RSSI is less than 17 cm. This method can provide real-time, high-precision vehicle positioning and trajectory tracking solutions for ITS application scenarios such as parking guidance, unmanned vehicle route monitoring, and vehicle lane change detection.
Read full abstract