As global temperatures rise, permafrost is degraded. Permafrost degradation alters vegetation phenology and community composition, thereby affecting local and regional ecosystems. The Xing'an Mountains, located on the southern edge of the Eurasian permafrost region, are very sensitive to the impact of permafrost degradation on ecosystems. Climate change has direct effects on permafrost and vegetation growth, and analysis of the indirect effects of permafrost degradation on vegetation phenology based on the normalized difference vegetation index (NDVI) can explain the internal impact mechanisms of ecosystem components. Based on the temperature at the top of permafrost (TTOP) model, which was used to simulate the spatial distribution of permafrost areas in the Xing'an Mountains from 2000 to 2020, the areas of the three permafrost types showed a decreasing trend. The mean annual surface temperature (MAST) increased significantly at a rate of 0.008 °C year−1 from 2000 to 2020, and the southern boundary of the permafrost region moved north by 0.1–1 degrees. The average NDVI value of the permafrost region increased significantly in 8.34 % of the region. The significant correlations between NDVI and permafrost degradation, temperature and precipitation in the permafrost degradation region were 92.06 % (80.19 % positive, 11.87 % negative), 50.37 % (42.72 % positive, 7.65 % negative), and 81.59 % (36.25 % positive, 45.34 % negative), and were mainly distributed along the southern boundary of the permafrost region. A significance test of phenology in the Xing'an Mountains showed that the end of the growing season (EOS) and the length of the growing season (GLS) were significantly delayed and prolonged in the southern sparse island permafrost region. Sensitivity analysis showed that permafrost degradation was the main factor that affected the start of the growing season (SOS) and GLS. When the effects of temperature, precipitation, and sunshine duration were excluded, the regions with a significant positive correlation between permafrost degradation and SOS (20.96 %) and GLS (28.55 %) were located in both continuous and discontinuous permafrost regions. The regions with a significant negative correlation between permafrost degradation and SOS (21.11 %) and GLS (8.98 %) were mainly distributed on the southern edge of the island permafrost region. In summary, the NDVI changed significantly in the southern boundary of the permafrost region, and this change was mainly attributed to permafrost degradation.
Read full abstract