This work deals with sequential implicit schemes for incompressible and immiscible two-phase Darcy flows which are commonly used and well understood in the case of spatially homogeneous capillary pressure functions. To our knowledge, the stability of this type of splitting schemes solving sequentially a pressure equation followed by the saturation equation has not been investigated so far in the case of discontinuous capillary pressure curves at different rock type interfaces. It will be shown here to raise severe stability issues for which stabilization strategies are investigated in this work. To fix ideas, the spatial discretization is based on the Vertex Approximate Gradient (VAG) scheme accounting for unstructured polyhedral meshes combined with an Hybrid Upwinding (HU) of the transport term and an upwind positive approximation of the capillary and gravity fluxes. The sequential implicit schemes are built from the total velocity formulation of the two-phase flow model and only differ in the way the conservative VAG total velocity fluxes are approximated. The stability, accuracy and computational cost of the sequential implicit schemes studied in this work are tested on oil migration test cases in 1D, 2D and 3D basins with a large range of capillary pressure parameters for the drain and barrier rock types. It will be shown that usual splitting strategies fail to capture the right solutions for highly contrasted rock types and that it can be fixed by maintaining locally the pressure saturation coupling at different rock type interfaces in the definition of the conservative total velocity fluxes. The numerical investigation of the sequential schemes is also extended to the widely used finite volume Two-Point Flux Approximation spatial discretization.