Abstract The two-step U-Net model (TU-Net) contains a western North Pacific subtropical high (WNPSH) prediction model and a precipitation prediction model fed by the WNPSH predictions, oceanic heat content, and surface temperature. The data-driven forecast model provides improved 4-month lead predictions of the WNPSH and precipitation in the middle and lower reaches of the Yangtze River (MLYR), which has important implications for water resources management and precipitation-related disaster prevention in China. When compared with five state-of-the-art dynamical climate models including the Climate Forecast System of Nanjing University of Information Science and Technology (NUIST-CFS1.0) and four models participating in the North American Multi-Model Ensemble (NMME) project, the TU-Net produces comparable skills in forecasting 4-month lead geopotential height and winds at the 500- and 850-hPa levels. For the 4-month lead prediction of precipitation over the MLYR region, the TU-Net has the best correlation scores and mean latitude-weighted RMSE in each summer month and in boreal summer [June–August (JJA)], and pattern correlation coefficient scores are slightly lower than the dynamical models only in June and JJA. In addition, the results show that the constructed TU-Net is also superior to most of the dynamical models in predicting 2-m air temperature in the MLYR region at a 4-month lead. Thus, the deep learning-based TU-Net model can provide a rapid and inexpensive way to improve the seasonal prediction of summer precipitation and 2-m air temperature over the MLYR region. Significance Statement The purpose of this study is to examine the seasonal predictive skill of the western North Pacific subtropical high anomalies and summer rainfall anomalies over the middle and lower reaches of the Yangtze River region by means of deep learning methods. Our deep learning model provides a rapid and inexpensive way to improve the seasonal prediction of summer precipitation as well as 2-m air temperature. The work has important implications for water resources management and precipitation-related disaster prevention in China and can be extended in the future to predict other climate variables as well.
Read full abstract