Abstract

Digital Agriculture is one of the important applications of Digital Earth. As the global climate changes and food security becomes an increasingly important issue, agriculture drought comes to the focus of attention. China is a typical monsoon climate country as well as an agricultural country with the world's largest population. The East Asian monsoon has had a tremendous impact upon agricultural production. Therefore, a maize drought disaster risk assessment, in line with the requirements of sustainable development of agriculture, is important for ensuring drought disaster reduction and food security. Meteorology, soil, land use, and agro-meteorological observation information of the research area were collected, and based on the concept framework of ‘hazard-inducing factors assessment (hazard)-vulnerability assessment of hazard-affected body (vulnerability curve)-risk assessment (risk),’ importing crop model EPIC (Erosion-Productivity Impact Calculator), using crop model simulation and digital mapping techniques, quantitative assessment of spatio-temporal distribution of maize drought in China was done. The results showed that: in terms of 2, 5, 10, and 20 year return periods, the overall maize drought risk decreased gradually from northwest to southeast in the maize planting areas. With the 20 year return period, high risk value regions (drought loss rate ≥0.5) concentrate in the irrigated maize region of Northwest china, ecotone between agriculture and animal husbandry in Northern China, Hetao Irrigation Area, and north-central area of North China Plain, accounting for 6.41% of the total maize area. These results can provide a scientific basis for the government's decision-making in risk management and drought disaster prevention in China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.