Dust storms are one of the important natural hazards that affect the lives of inhabitants all around the world, especially in North Africa and the Middle East. In this study, wind speed, wind direction, and air temperature patterns are investigated in one of the dustiest cities in Sistan Basin, Zahedan City, located in southeast Iran, over a 17-year period (2004â2020) using a WRF model and ground observation data. The city is located near a dust source and is mostly affected by local dust storms. The World Meteorology Organization (WMO) dust-related codes show that the city was affected by local dust, with 52 percent of the total dust events occurring during the period (2004â2021). The cityâs weather station reported that 17.5% and 43% were the minimum and maximum dusty days, respectively, during 2004â2021. The summer and July were considered the dustiest season and month in the city. Since air temperature, wind speed, and wind direction are important factors in dust rising and propagation, these meteorological factors were simulated using the Weather Research and Forecasting (WRF) model for the Zahedan weather station. The WRF modelâs output was found to be highly correlated with the station data; however, the WRF simulation mostly overestimated when compared with station data during the study period (2004â2020). The model had a reasonable performance in wind class frequency distribution at the station, demonstrating that 42.6% of the wind was between 0.5 and 2, which is in good agreement with the station data (42% in the range of 0.5â2). So, the WRF model effectively simulated the wind class frequency distribution and the wind direction at Zahedan station, despite overestimating the wind speed as well as minimum, maximum, and average air temperatures during the 17-year period.