The phase transformations of the directionally solidified (DS) and powder metallurgy (PM) Ni-base superalloys were investigated by JMatPro, synchrotron XRD (SXRD) and differential scanning calorimetry (DSC). The minor phases, such as MC, eutectic γ′ and Ni5Hf, and γ matrix with secondary γ′ existed in as-cast microstructure of DS DZ22. However, only γ matrix was found in PM625 alloy powders. The phase change in both heating (melting) and cooling (solidification) process was investigated by DSC on DZ22 test bar and PM625 alloy powders respectively. The DSC experiment with different heating/cooling rates (5-40°C/min) was performed on DS superalloy DZ22. The results indicated that the heating/cooling rate had obvious effect on the DSC results of the phase transformation temperatures of liquidus, MC carbides, solidus, eutectic (γ+γ′) and secondary γ′. The heating and cooling DSC curves shifted to high and low temperature direction respectively, accompanied by the heating/cooling rate increased. However, the average values of specific peaks of heating and cooling curves are relatively consistent which is close to the equilibrium phase change temperatures of the alloy and makes the results comparable. Besides the average value method, the liquidus temperature of the alloy (0°C/min) can also be obtained by method of linear-fit/extrapolating from 5-40°C/min heating/cooling rates or inflection point deviate from the baseline of DSC cooling curves which could minimize the heating/cooling rate effects. The DSC experiment was carried out on PM625 superalloy powders with different particle size range (0-355μm), the results indicated that the particle size had minor effect on liquidus and solidus temperatures of DSC heating curves, the differences were less than 2°C. The change in phase transformation temperatures under different heating/cooling rate should be considered for selecting the process parameter (heat treatment, HIP or casting) for manufacturing Ni-base superalloy components.