ObjectiveWhile high concentrations of toluene are known to affect multiple human organ systems, research concerning the influence of immediate, short-term exposure to toluene indoors and at low concentrations is scarce. Here, we studied effects of indoor toluene exposure on neural network alterations during working memory (WM) encoding. MethodsA total of 23 healthy college students were recruited. All participants were situated in a closed environmental chamber with a full fresh air system. Each participant was subjected to four exposure experiments with different toluene concentrations (0, 17.5, 35, and 70 ppb, named Group A, B, C and D, respectively), with at least one week between each experiment. WM Behavioral and 19-channel electroencephalogram (EEG) recordings in a pre-set environmental chamber were conducted simultaneously during each toluene exposure experiment. Neural networks relevant to WM encoding were visualized analyzing the obtained data. Results1. No significant difference in WM behavioral performance among the four groups was found. However, a significant increase in whole brain neural network functional connectivity was noted, especially in the frontal region.2. An outflow directional transfer function (DTFoutflow) revealed higher frontal region values among Group D (the 70 ppb group) as compared to Group A, B and C (the0, 17.5 ppb and 35 ppb groups, respectively), although no differences in frontal region DTFinflow values among the four groups were noted.3. The DTFFZ-F7, DTFFZ-T5, DTFFZ-P4, DTFFZ-P3, DTFFP2-O2, DTFP3-T4, DTFP3-F4, DTFP4-CZ and DTFP4-T4 values of Group D were found to be higher as compared to those of Group A and B. Furthermore, DTFFZ-F7 and DTFP4-T4 values of Group C were higher as compared to those of Group A. The DTFFZ-F7 values of Group D were higher as compared to those of the Group C. ConclusionShort-term toluene exposure significantly influences neural networks during cognitive processes such as WM encoding, even at low concentration.