Microplastics (MPs) have been found in different environmental department globally, and the threat to organisms posed by MPs is also widely recognized. Kinematic characteristics of low-density fiber MPs in Poyang Lake under different due-south wind were calculated by combining hydrodynamic model with particle tracking model in this study. Poyang Lake is divided into north lake and south lake for study based on its topographic and hydrodynamic characteristics, and the results are as follows: the critical wind speeds causing vertical mixing of MPs in the water column ranges from 6 to 9m·s-1 in the north lake, while it is >9m·s-1 in the south lake, and the MPs beaching rate decreases by 7.08%/(m·s-1) as the due-south wind speed increases. The MPs speed is mainly affected by surface current, while the direction of the velocity is more affected by wind. The MPs velocity in the south lake is only 27.10% of that in the north lake, and the direction is more dispersed, so the due-south wind concentrates the direction of MPs velocity more to the north in the south lake. The northern wards movement of MPs resulted in a noticeable decrease in FS in the south lake, with FS decreasing by 0.10 for every 1m·s-1 increase in wind speed, and therefore, the due-south wind reduces the ecological risk posed by MPs through reducing the range of movement and retention time. However, since the FS in the north lake has been close to the minimum value of 1, the reduction of the FS is not significant, and the wind reduces the risk mainly by shortening the retention time of the MPs. Therefore, the ecological risk caused by MPs in Poyang Lake under no or weak wind conditions should be taken into consideration.
Read full abstract