The subjective visual vertical (SVV) is usually considered a measure of otolith function. Herewith we investigate the influence of semicircular canal (SCC) stimulation on the SVV by rotating normal subjects in yaw about an earth-vertical axis, with velocity steps of +/- 90 degrees /s, for 60 s. SVV was assessed by setting an illuminated line to perceived earth vertical in darkness, during a per- and postrotary period. Four head positions were tested: upright, 30 degrees backward (chin up) or forward, and approximately 40 degrees forward from upright. During head upright/backward conditions, a significant SVV tilt (P < 0.01) in the direction opposite to rotation was found that reversed during postrotary responses. The rotationally induced SVV tilt had a time constant of decay of approximately 30 s. Rotation with the head 30 degrees forward did not affect SVV, whereas the 40 degrees forward tilt caused a direction reversal of SVV responses compared with head upright/backward. Spearman correlation values (Rho) between individual SCC efficiencies in different head positions and mean SVV tilts were 0.79 for posterior, 0.34 for anterior, and - 0.80 for horizontal SCCs. Three-dimensional video-oculography showed that SVV and torsional eye position measurements were highly correlated (0.83) and in the direction opposite to the slow phase torsional vestibuloocular reflex. 1) during yaw axis rotation without reorientation of the head with respect to gravity, the SVV is influenced by SCC stimulation; 2) this effect is mediated by the vertical SCCs, particularly the posterior SCCs; 3) rotationally induced SVV changes are due to torsional ocular tilt; 4) SVV and ocular tilts occur in the "anticompensatory," fast phase direction of the torsional nystagmus; and 5) clinically, abnormal SVV tilts cannot be considered a specific indication of otolith system dysfunction.