Let P<∞(Λ-mod)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal {P}^{<\\infty } ({\\Lambda }\ ext {-mod})$\\end{document} be the category of finitely generated left modules of finite projective dimension over a basic Artin algebra Λ. We develop a widely applicable criterion that reduces the test for contravariant finiteness of P<∞(Λ-mod)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal {P}^{<\\infty } ({\\Lambda }\ ext {-mod})$\\end{document} in Λ-mod to corner algebras eΛe for suitable idempotents e ∈Λ. The reduction substantially facilitates access to the numerous homological benefits entailed by contravariant finiteness of P<∞(Λ-mod)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal {P}^{<\\infty } ({\\Lambda }\ ext {-mod})$\\end{document}. The consequences pursued here hinge on the fact that this finiteness condition is known to be equivalent to the existence of a strong tilting object in Λ-mod. We moreover characterize the situation in which the process of strongly tilting Λ-mod allows for unlimited iteration: This occurs precisely when, in the category mod-Λ~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\ ext {mod-}\\widetilde {\\Lambda }$\\end{document} of right modules over the strongly tilted algebra Λ~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\widetilde {\\Lambda }$\\end{document}, the subcategory of modules of finite projective dimension is in turn contravariantly finite; the latter condition can, once again, be tested on suitable corners eΛe of the original algebra Λ. In the (frequently occurring) positive case, the sequence of consecutive strong tilts, Λ~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\widetilde {\\Lambda }$\\end{document}, Λ~~\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\widetilde {\\widetilde {\\Lambda }}$\\end{document}, Λ~~~,…\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\widetilde {\\widetilde {\\widetilde {\\Lambda }}}, \\dots $\\end{document}, is shown to be periodic with period 2 (up to Morita equivalence); moreover, any two adjacent categories in the sequence P<∞(mod-Λ~)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal {P}^{<\\infty } (\ ext {mod-}\\widetilde {\\Lambda })$\\end{document}, P<∞(Λ~~-mod)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal {P}^{<\\infty }(\\widetilde {\\widetilde {\\Lambda }}\ ext {-mod})$\\end{document}, P<∞(mod-Λ~~~),…\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal {P}^{<\\infty }(\ ext {mod-}\\widetilde {\\widetilde {\\widetilde {\\Lambda }}}), \\dots $\\end{document}, alternating between right and left modules, are dual via contravariant Hom-functors induced by tilting bimodules which are strong on both sides. Our methods rely on comparisons of right P<∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal {P}^{<\\infty }$\\end{document}-approximations in the categories Λ-mod, eΛe-mod and the Giraud subcategory of Λ-mod determined by e; these interactions hold interest in their own right. In particular, they underlie our analysis of the indecomposable direct summands of strong tilting modules.