The Kribi-Campo sub-basin, located in the Gulf of Guinea, constitutes the southeastern segment of the Cameroon Atlantic Margin. Drilling in the Aptian salt unit revealed a sparse hydrocarbon presence, contrasting with modest finds in its counterparts like the Ezanga Salt in Gabon and the Rio Muni Salt in Equatorial Guinea. This discrepancy prompted a reassessment of the depositional context and hydrocarbon potential of the Mundeck salt unit. By integrating 2D seismic reflection and borehole data analysis, this study established the structural and stratigraphic framework of the area, emphasizing the salt unit’s significance. Borehole data indicate a localized salt unit offshore Kribi, with seismic reflection data revealing distinct forms of diapir and pillow. This salt unit displays a substantial lateral extent with thicknesses ranging from 4000 m to 6000 m. The depositional context is linked to the following two major geological events: a significant sea-level drop due to margin uplift during the Aptian and thermodynamic processes driven by transfer faults related to mid-oceanic ridge formation. These events were crucial in forming and evolving the Mundeck Salt. Regarding hydrocarbon prospects, this study identifies the unit as being associated with potential petroleum plays, supported by direct hydrocarbon indicators and fault-related structures. The findings suggest that untapped hydrocarbon resources may still exist, underscoring the need for further exploration and analysis.