Multilayer thin films have the potential to act as high dielectric strength insulation for wire and microelectronics. In this study, films consisting of 2, 4 or 8 layers, composed of Al2O3 with SiO2 or Ta2O5, were prepared via pulsed direct current and radio frequency magnetron sputtering to a thickness of between 152 and 236 nm. The dielectric strengths of all films exceeded the 310 Vμm−1 achieved for PDC Al2O3. Maximum dielectric strengths were obtained for four layer composites; Al2O3-SiO2-Al2O3-SiO2 (466 Vμm−1) and Al2O3-Ta2O5-Al2O3-Ta2O5 (513 Vμm−1), each containing two PDC-Al2O3 and two RF-SiO2/Ta2O5 layers. Whilst the average dielectric strength was higher in the Ta2O5 composites, they suffered from higher leakage prior to breakdown with ca. 6.5 nA compared to ca. 0.1 nA for SiO2 composites. The mechanical properties of the composites were poorer due to increased intrinsic coating stress. Samples exhibited complete interfacial delamination with maximum coating adhesion strengths of 22 and 25 MPa. The variance resulted from larger coefficient of thermal expansion for Ta2O5 compared to SiO2. Sputtered composites of Al2O3 and either SiO2 or Ta2O5 had high breakdown strength with reasonable adhesion and could be suitable for insulating copper conductors in the aerospace and automotive industries.
Read full abstract