In this work, we construct and investigate the relativistic spin-12 fermionic fields quantum dynamics in static spherically symmetric Bumblebee black hole background. The derivation of the Dirac equation in a general static spherically symmetric black hole space-time is carried out in detail via tetrad formalism. With the help of total angular momentum operator, the angular equation can be separated from the radial part where the solution is given in terms of the spinor harmonics. The radial Dirac equation has a well-known problem due to the presence of the square root terms appearing simultaneously with the rest mass that prevents us to find exact solutions. In this work, we present exact solutions of light mass fermion's wave function and energy levels bound in the static Bumblebee black hole. We discover the exact solutions of the massive Dirac's radial equation in terms of the Confluent Heun functions. Moreover, thanks to the well-known polynomial condition of the Confluent Heun functions, we also derive the energy quantization.
Read full abstract