Abstract

The point canonical transformation in non-relativistic quantum mechanics is applied as an algebraic method to obtain the solutions of the Dirac equation with spherical symmetry electromagnetic potentials. We want to show that some of the non-relativistic solvable potentials with shape-invariant symmetry can be related to the radial Dirac equation. Using this method, the idea of supersymmetry and shape invariance can be expanded to the relativistic quantum mechanics. The spinor wave functions for some of the obtained four-component electromagnetic potential are given in terms of special functions such as Jacobi, generalized Laguerre and Hermite polynomials. The relativistic bound-states spectrum for each case is also calculated in terms of the bound-states spectrum of the solvable potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.