The principal components and the relative orientation of the 2H paramagnetic shift and quadrupolar coupling tensors have been measured for the MCl2·2D2O family of compounds, M = Mn, Fe, Co, Ni, and Cu, using the two-dimensional shifting-d echo nuclear magnetic resonance experiment in order to determine (1) the degree of unpaired electron delocalization and (2) the number and location of crystallographically distinct hydrogen sites around oxygen and their fractional occupancies. Expressions for the molecular susceptibility of 3d ion systems, where the spin-orbit coupling is a weak perturbation onto the crystal field, are derived using the generalized Van Vleck equation and used to predict molecular susceptibilities. These predicted molecular susceptibilities are combined with various point dipole source configurations modeling unpaired electron delocalization to predict 2H paramagnetic shift tensors at potential deuterium sites. The instantaneous deuterium quadrupolar coupling and shift tensors are then combined with parameterized motional models, developed for trigonally (M = Mn, Fe, Co, and Cu) and pyramidally (M = Ni) coordinated D2O ligands, to obtain the best fit of the experimental 2D spectra. Dipole sources placed onto metal nuclei with a small degree of delocalization onto the chlorine ligands yield good agreement with the experiment for M = Mn, Fe, Co, and Ni, while good agreement for CuCl2·2D2O is obtained with additional delocalization onto the oxygen. Our analysis of the salts with trigonally coordinated water ligands (M = Mn, Fe, Co, and Cu) confirms the presence of bisector flipping and the conclusions from neutron scattering measurements that hydrogen bonding to chlorine on two adjacent chains leads to the water molecule in the [M(D2O)2Cl4] cluster being nearly coplanar with O-M-Cl involving the shortest metal-chlorine bonds of the cluster. In the case of NiCl2·2D2O, the experimental parameters were found to be consistent with a motional model where the D2O ligands are pyramidally coordinated to the metal and undergo bisector flipping while the water ligand additionally hops between two orientations related by a 120° rotation about the Ni-O bond axis. The position of the three crystallographically distinct hydrogen sites in the unit cell was determined along with fractional occupancies. This restricted water ligand motion is likely due to van der Waals interactions and is concerted with the motion of neighboring ligands.
Read full abstract