Abstract
This paper proposes a scattered field formulation of the finite-difference time domain method (S-FDTD) combining with a time-domain electric field integral equation (TD-EFIE) based on surface equivalence theorem. The scattered field formulation enables us to reduce computation cost effectively for the case that scatterers are located at a far distance from field sources of electromagnetic wave since we need to calculate the scattered field component only on the region in the vicinity of the scatterers. Then it is required for the use of the scattered field formulation that the field source for the incident field component has to be expressed by any analytical solutions such as a point dipole source, plane wave, and so on. In this work, the scattered field formulation of the FDTD method is applied to cases that there are no analytical expressions of the field sources, in which the field source contains conductors such as antennas, combining with the TD-EFIE on a virtual surface which encloses the field sources. Then, it is known that calculation of the TD-EFIE itself is time consuming. This paper considers speed-up of the S-FDTD simulation based on the TD-EFIE using a spherical harmonic expansion of Green’s function of Helmholtz equation, additionally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Electromagnetics and Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.