The development of the distributed acoustic sensing (DAS) technique enables us to record seismic data at a significantly improved spatial sampling rate at meter scales, which offers new opportunities for high-resolution subsurface imaging. However, DAS recordings are often characterized by a low signal-to-noise ratio (S/N) due to the presence of data noise, significantly degrading the reliability of imaging and interpretation. Current DAS data noise reduction methods remain insufficient in simultaneously preserving weak signals and eliminating various types of noise. Particularly when dealing with DAS data that are contaminated by four types of noise (i.e., high-frequency noise, high-amplitude erratic noise, horizontal noise, and random background noise), it becomes challenging to attenuate the strong noise while maintaining fine-scale features. To address these issues, we develop an integrated local orthogonalization (LO) method that can remove a mixture of different types of noise while protecting the useful signal. Our LO method effectively eliminates the aforementioned noise by concatenating multiple denoising operators including a band-pass filter, a structure-oriented, spatially varying median filter, a dip filter in the frequency-wavenumber domain, and a curvelet filter. Next, the local orthogonalization weighting operator is applied to extract signal energy from the removed noise section. We demonstrate the robustness of our LO method on various challenging DAS data sets from the Frontier Observatory for Research in Geothermal Energy geothermal field. The denoising results demonstrate that our LO method can successfully minimize the levels of different types of noise while preserving the energy of weak signals.
Read full abstract