Abstract
SUMMARY Borehole radar (BHR) is an effective imaging tool. It can be used to detect and map faults, fractures, folds, domes, partings and mine workings. Most BHRs have azimuthally omnidirectional radiation patterns. The echoes sensed by such BHRs may come from any direction. Considering a radar in a straight borehole that passes through a stack of flat reflection planes, V-shaped events or crosses appear on the time section. One of the arms of each cross is a real image while the other is an ambiguity of known origin. Directional ambiguities such as these obstruct efforts to interpret the data. In this paper, we address this difficulty by using a modified f–k migration algorithm to translate crosses into lines on the final section that are consistent with a priori information about for example bedding. Compared with conventional strategies, for example migration + f–k dip filter, this approach integrates the two separated processes into one and is straightforward, computationally effective and simple to implement. The method is demonstrated using a synthetic model and a real BHR field data set. It allows the interpreter to use a priori information about fault swarms or plausible bedding planes at an early stage. The reconstructed BHR image helps the search for geological anomalies such as fractures, partings, domes and rolls that could be a hazard for mining.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.