The dextran-thyme magnesium-doped hydroxyapatite (10MgHAp-Dex-thyme) composite layers were prepared by a dip-coating procedure from stable suspensions and further analyzed for the first time. Different characterization techniques were employed to explore the physical-chemical features of the 10MgHAp-Dex-thyme suspensions and derived coatings. Information regarding the 10MgHAp-Dex-thyme suspensions was extracted on the basis of dynamic light scattering, zeta potential, and ultrasound measurements. The crystalline quality of the biocomposite powders—resulting after the centrifugation of suspensions—and the layers deposited on glass was assessed by X-ray diffraction in symmetric and grazing incidence geometries, respectively. The chemical structure and presence of functional groups were evaluated for both powder and coating by Fourier transform infrared spectroscopy in attenuated total reflectance mode. The extent of the antimicrobial effect range of the biocomposite suspensions and coatings was tested against different Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa) and fungus (Candida albicans) strains with promising results.
Read full abstract