A single acyloxy group at C-2 can control the outcome of nucleophilic substitution reactions of pyran-derived acetals, but the extent of the neighboring-group participation depends on a number of factors. We show here that neighboring-group participation does not necessarily control the stereochemical outcome of acetal substitution reactions with weak nucleophiles. The 1,2-trans selectivity increased with increasing reactivity of the incoming nucleophile. This trend suggests the intermediacy of both cis-fused dioxolenium ions and oxocarbenium ions in the stereochemistry-determining step. In addition, as the electron-donating ability of the neighboring group decreased, the preference for the 1,2-trans products increased. Computational studies show how the barriers for the ring-opening reaction on the dioxolenium ions and the transition states to provide the oxocarbenium ions change with the electron-donating capacity of the C-2-acyloxy group and the reactivity of the nucleophile.