We consider the problem of forming an algorithm for the operation of a digital filter that provides processing, according to a certain law, of discrete samples x[k] of some continuous signal x(t) at the moments of quantization tк=k ∙T0, where T0 -[second]- is the discreteness period in time, and k=0,1,2,.. is the integer variable defining dimensionless discrete time. This work poses and solves the problem of forming the digital filter parameters restructuring, which ensures that the filtering properties remain unchanged when the frequency of information is changed, in particular, the constancy of the frequency and pseudo-frequency characteristics of the filter. An algorithm for restructuring the numerical parameters of the filter based on information about the time intervals of information arrival has been developed. At the stage of filter development, a special conversion matrix is formed for the specified parameters, and at the stage of filter operation in real time, an operational recalculation of the digital filter parameters is performed. For the test example, the calculation results are given, showing good tuning accuracy and stable filter characteristics with a significant change in the quantization frequency.
Read full abstract