It is a deceptively simple question to ask how acoustic disturbances propagate in a non-homogeneous flowing fluid. Subject to suitable restrictions, this question can be answered by invoking the language of Lorentzian differential geometry. This paper begins with a pedagogical derivation of the following result: if the fluid is barotropic and inviscid, and the flow is irrotational (though possibly time dependent), then the equation of motion for the velocity potential describing a sound wave is identical to that for a minimally coupled massless scalar field propagating in a (3 + 1)-dimensional Lorentzian geometry The acoustic metric governing the propagation of sound depends algebraically on the density, flow velocity, and local speed of sound. Even though the underlying fluid dynamics is Newtonian, non-relativistic, and takes place in flat space plus time, the fluctuations (sound waves) are governed by an effective (3 + 1)-dimensional Lorentzian spacetime geometry. This rather simple physical system exhibits a remarkable connection between classical Newtonian physics and the differential geometry of curved (3 + 1)-dimensional Lorentzian spacetimes, and is the basis underlying a deep and fruitful analogy between the black holes of Einstein gravity and supersonic fluid flows. Many results and definitions can be carried over directly from one system to another. For example, it will be shown how to define the ergosphere, trapped regions, acoustic apparent horizon, and acoustic event horizon for a supersonic fluid flow, and the close relationship between the acoustic metric for the fluid flow surrounding a point sink and the Painlevé-Gullstrand form of the Schwarzschild metric for a black hole will be exhibited. This analysis can be used either to provide a concrete non-relativistic analogy for black-hole physics, or to provide a framework for attacking acoustics problems with the full power of Lorentzian differential geometry.