Abstract

We consider higher dimensional Lorentzian spacetimes which are currently of interest in theoretical physics. It is possible to algebraically classify any tensor in a Lorentzian spacetime of arbitrary dimensions using alignment theory. In the case of the Weyl tensor, and using bivector theory, the associated Weyl curvature operator will have a restricted eigenvector structure for algebraic types II and D, which leads to necessary conditions on the discriminants of the associated characteristic equation which can be manifestly expressed in terms of polynomial scalar curvature invariants. The use of such necessary conditions in terms of scalar curvature invariants will be of great utility in the study and classification of black hole solutions in more than four dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.